Approximately additive set functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximately generalized additive functions in several variables

The goal of  this paper is to investigate the solutionand stability in random normed spaces, in non--Archimedean spacesand also in $p$--Banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.

متن کامل

approximately generalized additive functions in several variables

the goal of  this paper is to investigate the solutionand stability in random normed spaces, in non--archimedean spacesand also in $p$--banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.

متن کامل

Fuzzy approximately additive mappings

Moslehian  and Mirmostafaee, investigated the fuzzystability problems for the Cauchy additive functional equation, the Jensen additivefunctional equation and the cubic functional equation in fuzzyBanach spaces. In this paper, we investigate thegeneralized Hyers–-Ulam--Rassias stability of the generalizedadditive functional equation with $n$--variables, in fuzzy Banachspaces. Also, we will show ...

متن کامل

Σ-null-additive Set Functions

There is introduced the notion of σ-null-additive set function as a generalization of the classical measure. There are proved the relations to disjoint and chain variations. The general Lebesgue decomposition theorem is obtained. AMS Mathematics Subject Classification (2000): 28A25

متن کامل

Approximately generalized additive functions in several variables via fixed point method

In this paper, we obtain the general solution and the generalized   Hyers-Ulam-Rassias stability in random normed spaces, in non-Archimedean spaces and also in $p$-Banach spaces and finally the stability via fixed point method for a functional equationbegin{align*}&D_f(x_{1},.., x_{m}):= sum^{m}_{k=2}(sum^{k}_{i_{1}=2}sum^{k+1}_{i_{2}=i_{1}+1}... sum^{m}_{i_{m-k+1}=i_{m-k}+1}) f(sum^{m}_{i=1, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1987

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-54-1-163-164